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ABSTRACT: In this study the characterization of white wines produced from the monovarietal ‘Greco bianco’ grape variety is
presented for the first time. A total of 40 commercial wines, from two different southern Italian regions, Calabria and Campania,
from the same grape variety and two different vintages, were investigated. The analyses were performed by means of
chromatographic methods, conventional analyses, and nuclear magnetic resonance (NMR) spectroscopy. No differentiation was
observed according to the year of production but a significant discrimination was achieved using principal component analysis
(PCA) and partial least squares-discriminant analysis (PLS-DA). In particular, PLS-DA allowed the selection of compounds
(total acidity; citric, malic, succinic, and lactic acids; total polyphenol index; glucose and proline/arginine ratio) useful for
differentiating the studied wines on the basis of geographical origin.
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■ INTRODUCTION
Wine consists of two primary components, water and ethanol.
However, the basic flavor of wine depends on about 20
additional compounds (glycerol and other alcohols, sugars,
organic acids, various ions).1 The vast majority of chemicals
found in wine are the metabolic byproducts of yeast activity
during fermentation. The subtle differences that distinguish one
varietal wine from another depend on an even larger number of
compounds. The number of aroma compounds derived from
grapes is comparatively small; nevertheless, the fragrant volatile
fractions often constitute the compounds that make varietal
wines distinctive.2

The rapid increase in the number of compounds found in
wine is due to progress in the technologies used for their
identification: analytical techniques such as gas chromatography
(GC), thin-layer chromatography (TLC), high-performance
liquid chromatography (HPLC), droplet countercurrent
chromatography (DCCC), and multilayer coil countercurrent
chromatography (MLCCC);3 solid-phase microextraction
(SPME);4−6 and spectroscopic techniques such as infrared
(IR)7 and nuclear magnetic resonance (NMR) spectrosco-
py.8−12 In most cases, the methods used to characterize the
different components of wine rely on a pretreatment of the
sample to separate and concentrate the compounds to be
analyzed. In this respect, SPME and NMR, although with
different sensitivities, are quite unique among the other
techniques because they do not require pretreatment of the
samples; in particular, NMR is a nondestructive selective

technique that allows the simultaneous and rapid determination
of a great number of low molecular mass components in
complex mixtures.9,10,13 Moreover, the determinations obtained
by NMR spectroscopy and analytical techniques give
interesting information regarding the contribution of different
ions to wine differentiation according to particular locations.13

The wine “terroir” is influenced by many factors: soil,
topography, microclimate and macroclimate, and vineyard
cultural conditions.14,15 Therefore, the study of wine differ-
entiation according to vine variety, geographical origin, and
vintage is important for the authenticity assessment and
identification of possible adulteration.13,16,17

Many attempts have been made to differentiate the origin of
wines from different regions by means of multivariate statistical
analysis of various chemical parameters.18−21 The character-
ization of wines according to provenance has been studied
either among wines of different grape variety and regions or
among wines of the same variety but grown in a different
geographical origin, even if this latter differentiation proved to
be more difficult.22

As a continuation of a previous work on Italian wines,17 we
examined the possibility of differentiating wines from the same
grape variety to see possible variations related with the
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pedological and geological substrata of vineyards. We present
here the characterization of white wines produced from
monovarietal ‘Greco bianco’ grape variety in different regions
of southern Italy, Calabria and Campania.
Greco is an Italian wine grape probably of Greek origin. The

name relates to both white (‘Greco bianco’) and black (‘Greco
nero’) wine grape varieties. Although more acreage is dedicated
to ‘Greco nero’, ‘Greco bianco’ is the grape most commonly
referred to by the shorthand “Greco”. In Campania. Greco is
used to produce the Denominazione di Origine Controllata e
Garantita (DOCG) wine “Greco di Tufo” and in Calabria to
make the Denominazione di Origine Controllata (DOC) wine
“Greco di Bianco”.
The study has been performed by means of chromatographic

methods, routine analyses, and NMR spectroscopy. Different
statistical methods have been applied to analyze data collected
from different techniques. No other characterization study on
these Greco wines has been carried out until now.

■ MATERIALS AND METHODS
Samples. A total of 40 commercial white wine samples made from

‘Greco bianco’ grape variety were analyzed (Table 1). All of the wines
were directly collected from the producers. Twenty wines (10 vintage
2007 and 10 vintage 2008) were provided by 10 producers of “Ciro”̀
wine (Calabria region), and 20 wines (10 vintage 2007 and 10 vintage
2008) were provided by 10 producers of “Greco di Tufo” wine
(Campania region). Ciro ̀ wine is classified as DOC, whereas Greco di
Tufo wine as DOCG. In this study were selected only wines made
exclusively from ‘Greco bianco’ variety, even though the law permits
the addition of a low percentage of other grape varieties in
winemaking.
Conventional Chemical Analyses. Determinations of total

titratable acidity, volatile acidity, pH, density, total and free SO2, and
chromatic characteristics were carried out according to official
methods.23 The pH was measured with a Hanna Instruments (Milano,
Italy) 8424 pH-meter. A Kjeltec Sytem 1026 Distilling Unit (PBI
International, Milano, Italy) was used for volatile acidity determi-
nation, whereas colorimetric measurements for the determination of
color intensity (abs420 + abs520 + abs620), tonality (abs420/abs520), and
total polyphenol index (abs280 measured on the sample diluted 1:9
with distilled water) were made with a Cary 1E UV−visible
spectrophotometer (Varian, Leini, Italy). Total polyphenol content
(TPC) was measured spectrophotometrically at 765 nm (Varian) after
reaction with Folin−Ciocalteu reagent, according to the method
described by Singleton et al.24 Results are given as gallic acid
equivalents (GAE, mg/L). All of the chemicals were purchased from
Sigma-Aldrich (Milano, Italy).
NMR Sample Preparation. Directly after bottle uncorking, 0.60

mL of wine was mixed with 0.09 mL of D2O and 0.01 mL of a solution
of 1.76% TSP in D2O, with a final volume of 0.70 mL, and placed in a
5 mm NMR tube. TSP was used as both chemical shift reference (δ =
0) and internal standard for quantitative analysis.
NMR Measurements. The NMR spectra were acquired on a

Varian 400 spectrometer located at the CIGAS (University of
Basilicata, Potenza). The spectrometer was equipped with a 5 mm
direct detection pulsed field z-axis gradient probe, operating at 399.96
MHz for 1H. The temperature during all experiments was kept at 25
°C. No sample rotation was applied. All of the experiments have been
performed at the wine natural pH values. The 1D 1H NMR spectra
were acquired using a WET1D sequence to suppress both the water
signal and the CH3 and CH2 signals from ethanol. One hundred and
twenty-eight scans were acquired with a spectral width of 4807 Hz and
an acquisition time of 3.3 s. A recycle delay of 1.5 s was selected.
Preliminary measurements of T1 relaxation times were run to check

that the complete relaxation of different wine components was ensured
by the selected experimental conditions.

1D spectra were Fourier transformed with FT size of 32K and 0.2
Hz line-broadening and phased, and a polynomial baseline correction
was applied over the whole spectral range.

Total correlation spectroscopy (TOCSY) spectra with water
suppression by presaturation were acquired with 2048 data points
over a 4807 Hz bandwidth; 128 scans were acquired for each of the
200 increments with a relaxation delay of 1 s. The duration of the
spinlock was 60 ms. Spectra were processed with cosine squared
function in F2 and sine bell shift constant in F1 dimensions,
respectively.

In all experiments receiver gain was set automatically, as suggested
for routine quantitative 1H NMR measurements.25

NMR Quantitative Analysis. For the quantification of the wine
components we used a modification of the procedure described
elsewhere.17 For each wine, two samples were prepared; for each
sample, three 1H NMR spectra were acquired; each spectrum was data
processed, and peak integration was performed always on the same
peaks in the same spectral region. Manual integration of the selected
signal from wine analytes was used.26 The selected signals were those
of some organic acids (tartaric, malic, citric, succinic, lactic, and acetic

Table 1. Wines Studied

label sample identification year origin

1 Casa dell’Orco 2007 Campania
2 Vadiaperti 2007 Campania
3a Colline del Sole 2007 Campania
4 Ferrara 2007 Campania
5 Cantine di Marzo 2007 Campania
6 Terre D’Aione 2007 Campania
7 Torricino 2007 Campania
8 Villa Raiano 2007 Campania
9 Cantine dell’Angelo 2007 Campania
10 Giulia 2007 Campania
11 Casa dell’Orco 2008 Campania
12 Vadiaperti 2008 Campania
13 Colline del Sole 2008 Campania
14 Ferrara 2008 Campania
15 Cantine di Marzo 2008 Campania
16 Terre D’Aione 2008 Campania
17 Torricino 2008 Campania
18 Villa Raiano 2008 Campania
19 Cantine dell’Angelo 2008 Campania
20a Giulia 2008 Campania
21 Iuzzolini 2007 Calabria
22 Enotria 2007 Calabria
23 Curiale 2007 Calabria
24 Senatore 2007 Calabria
25 Val di Neto 2007 Calabria
26 Mandorleto 2007 Calabria
27 Marinello 2007 Calabria
28 Tenuta del Conte 2007 Calabria
29 Zito 2007 Calabria
30 Cantine Riunite 2007 Calabria
31a Iuzzolini 2008 Calabria
32 Enotria 2008 Calabria
33 Curiale 2008 Calabria
34 Senatore 2008 Calabria
35 Val di Neto 2008 Calabria
36 Mandorleto 2008 Calabria
37 Marinello 2008 Calabria
38 Tenuta del Conte 2008 Calabria
39 Zito 2008 Calabria
40 Cantine Riunite 2008 Calabria

aSee the Supporting Information for more detail.
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acids), three amino acids (arginine, alanine, and proline), and two
alcohols (glycerol and isoamyl alcohol). In particular, we used for
integration methine protons of tartaric acid; methylene protons of
malic, succinic, and citric acids; methyl protons of lactic and acetic
acids; methine proton of glycerol; methyls of isoamylic alcohol; one β-
proton of proline; β-protons of alanine; and γ-protons of arginine.
The identification of these selected compounds was performed on

the basis of literature data, TOCSY experiments, or spiking with
standard compounds. We applied the traditional method of NMR
integration versus the signal of a reference compound that has already
found successful applications in liquid food.17,26−28 In our case, the
comparison with the signal of the internal standard TSP allowed the
quantitative determination of the wine components. Recently, the
traditional integration method resulted in good agreement with
modern partial least-squares NMR methods for quantification of many
organic acids in beer.29

To validate the quantitative analysis, before studying Greco wines,
we tested the procedure mentioned above on “synthetic” wines
prepared with known quantities of the analytes as described
elsewhere.25,27,28

VnmrJ 2.1B software was used to acquire and elaborate all of the
NMR spectra.
HPLC Analyses. Total polysaccharides were determined using the

Peyron et al.30 method with some modifications. After filtration
through a 0.45 μm nitrocellulose membrane, 20 μL of sample was
directly injected. Isocratic separation of polysaccharides was performed
at 45 °C on a Supelco Progel-TSK G-OLIGO-PW column (300 × 7.8
mm) (Bellefonte, PA) equipped with a Supelco Progel-TSK OLIGO
guard column (4 cm × 6 mm i.d.). As mobile phase 0.2 M NaCl at a
flow rate of 0.8 mL/min was used. Quantification was performed in
comparison with an external calibration curve of mannan (concen-
trations from 50 to 500 mg/L).

For glucose, fructose, glycerol, and ethanol determination, 20 μL of
filtered sample was injected. Isocratic separation was performed at 75
°C on a Phenomenex Rezex ROA organic acid column (300 × 7.8
mm). The column supporter is sulfonate styrene divinyl benzene. The
H2SO4 (10.5 mM) was used as mobile phase with flow rate of 0.6 mL/
min. Quantification was performed in comparison with an external
calibration curve (concentrations of each compound from 5 to 50 g/
L). An HPLC apparatus (Varian) equipped with a 410 series
autosampler, a 210 series pump, and a 356-LC refractive index
detector was used for saccharide determination. Areas of related peaks
were recorded and integrated by Galaxie Chomatography Data System
ver. 1.9.302.530 (Varian). Each sample was prepared and analyzed in
duplicate.

Statistical Procedures. Statistical data treatment was performed
using the statistical package Statistica for Windows (ver. 5.1., 1997)
(Statsoft Inc., Tulsa, OK). The least significant difference (LSD) test
(p < 0.05) and one-way analysis of variance (ANOVA) were applied to
determine the main effect of the region and of the year of production
on the chemical composition of wines (calculated Fisher’s F). A
multivariate approach was also carried out, allowing the simultaneous
study of all investigated variables. Data were arranged into a matrix
characterized by samples (40 samples, 20 samples from Calabria and
20 samples from Campania; average values were considered) in the
rows and chemical measurements (26 variables) in the columns.
Autoscaling was performed prior to any calculation to give to all the
variables (expressed in different magnitude orders) the same chance to
influence the estimation of the principal components (PCs) and PLS
factors. Such a pretreatment results from performing the centering and
the standardization transformations and produces variables with zero
mean and unit standard deviation. Cross-validation was used as the
validation method. In particular, segmented cross-validation with four
samples for segment was employed. Two different approaches were

Table 2. Effect of Vintage on Wine Quality Parameters

yeara

physical−chemical parameter 2007 2008 significance (F)b

acetic acidc (mg/L) 314.18 a± 122.14 332.66 a± 139.43 ns
lactic acidc (mg/L) 694.89 a± 539.86 927.18 a± 637.06 ns
tartaric acidc (mg/L) 1772.40 a± 1098.12 1495.55 a± 905.89 ns
malic acidc (mg/L) 1511.85 a± 823.16 1411.83 a± 833.65 ns
citric acidc (mg/L) 722.35 a± 260.01 751.15 a± 208.22 ns
succinic acidc (mg/L) 835.42 a± 376.11 761.65 ± 376.11 ns
prolinec (mg/L) 788.62 ± 239.06 761.98 a± 185.41 ns
alaninec (mg/L) 175.33 a± 42.76 194.63 a± 53.97 ns
argininec (mg/L) 305.25 a± 64.21 302.38 a± 68.23 ns
Pro/Arg 2.60 a± 1.09 2.41 a± 0.88 ns
isoamylic alcoholc (mg/L) 270.02 a± 61.94 281.99 a± 42.81 ns
glycerold (g/L) 5.41 a± 1.42 5.49 a± 1.20 ns
pH 3.16 a± 0.18 3.21 a± 0.21 ns
total acidity (g/L tartaric acid) 5.84 a± 0.90 5.85 a± 0.97 ns
density 0.990 a± 0.01 0.991 a± 0.01 ns
color intensitye 0.237 a± 0.83 0.176 b± 0.45 8.23**
tonalityf 4.57 a± 0.53 4.75 a± 0.65 ns
total polyphenol index
Abs (280 nm) 1.12 a± 0.29 1.10 a± 0.38 ns
TPC (mg/L) 166.23 a± 58.62 141.48 a± 36.12 ns
volatile acidity (g/L acetic acid) 0.26 a± 0.08 0.26 a± 0.11 ns
total polysaccharides (mg/L) 356.65 a± 124.79 387.04 a± 124.21 ns
total SO2 (mg/L) 75.04 a± 28.79 80.24 a± 26.59 ns
free SO2 (mg/L) 14.21 a± 10.82 20.00 a± 13.60 ns
glucose (g/L) 0.71 a± 0.28 0.80 a± 0.59 ns
fructose (g/L) 1.40 a± 0.91 1.55 a± 0.88 ns
ethanol (g/L) 97.82 a± 6.45 97.14 a± 5.50 ns

aData in the same row with different letters are significantly different (LSD test at p < 0.05). bns, not significant; **, significant for p < 0.01; F,
calculated Fisher’s F. cDetermined by NMR. dDetermined by HPLC. e(abs420 + abs520 + abs620).

f(abs420/abs520).
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followed: in the first one, samples were randomly selected, whereas in
the second one samples belonging to the same producer were kept in
the same segment. No differences emerged from principal component
analysis (PCA) and partial least squares-discriminant analysis (PLS-
DA) models (results given in this paper concern the first approach).
PCA, followed by a varimax rotation, was first applied on the whole

data set. Varimax rotation31 allows for the alignment of the PCs with
the most important variables, by maximizing the variance of the
squared loadings along the rotated PCs. Thus one may directly
interpret the rotated PCs as the directions along which the most
significant variables are to be found. PLS-DA32 was then applied to the
data to find the important variables for the discrimination according to
provenance. This classification technique models the differences
between two classes. The PLS method calculates a linear regression
model between the predictors matrix (X) and the response vector (Y):
in this particular case, the Y vector was expressed with the binary code,
attributing 0 to samples from Campania and 1 to samples from
Calabria. A first model was built on the whole data set. Then the
important variables were chosen considering the absolute value of the
coefficients and their statistical relevance. The final model was built on
the reduced set of important variables. With regard to the coefficient
value, higher absolute values indicate variables that better discriminate
the wines according to provenance. The statistical relevance of the
variables was rather tested through Marten’s uncertainty test.33 In
brief, under cross-validation a number of submodels are created. For
every submodel, a set of model parameters and among them the
regression coefficients are calculated and the variations over these
submodels will be estimated so as to assess the stability of the results.
Multivariate calculation and data pretreatment were performed with

the software The Unscrambler version X (CAMO, Oslo, Norway).

■ RESULTS AND DISCUSSION

LSD Test and Analysis of Variance (ANOVA). The
results related to the chemical analyses of white wines are
reported in Tables 2 and 3 with their statistical evaluation.
ANOVA showed that the different chemical parameters taken
into account could significantly highlight differences among the
tested wines, somehow differentiating them on the basis of
geographical origin. Conversely, the year of production did not
differentiate wines from the 2007 and 2008 vintages according
to the chemical parameters considered, with the exception of
color intensity (Table 2, p < 0.01).
Total acidity was an important variable, being significantly

different between the studied regions and ranging from 5.33 to
6.36 g/L in wines of Calabria and Campania, respectively (p <
0.001). These values were higher than those reported in the
literature for Spanish white wines.22 The higher content of total
acidity could be also associated with a higher content of free
SO2 in wines from Campania than the value found in Calabria
wines, even if the SO2 total was similar in wines of the two
regions and, in any case, lower than the maximum permissible
limit of total SO2 for white wines (200 mg/L).
Among the wines from Calabria and Campania, different

concentrations were observed among the organic acids; in
particular, malic (p < 0.01), citric (p < 0.001), and succinic (p <
0.001) acid levels were significantly higher in wines from
Campania than in wines from Calabria, whereas acetic, lactic,
and tartaric acids did not contribute to discriminate the wines
by region. Furthermore, conversely to Loṕez-Tamames et al.34

and Šnuderl et al.,35 who reported that in white wines the

Table 3. Effect of Region on Wine Quality Parameters

regiona

physical−chemical parameter Calabria Campania significance (F)b

acetic acidc (mg/L) 324.07 a± 137.43 322.78 a± 125.09 ns
lactic acidc (mg/L) 731.60 a± 377.99 890.46 a± 754.68 ns
tartaric acidc (mg/L) 1555.25 a± 946.41 1812.7 a± 776.16 8.62**
malic acidc (mg/L) 1051.60 a± 624.83 1872.11 b± 756.28 9.64**
citric acidc (mg/L) 636.56 a± 156.62 837.30 b± 256.25 18.47***
succinic acidc (mg/L) 686.89 a± 136.72 910.39 b± 222.17 14.71***
prolinec (mg/L) 581.06 a± 380.29 969.54 b± 143.83 18.26***
alaninec (mg/L) 189.75 a± 53.26 180.21 a± 45.29 ns
argininec (mg/L) 265.60 a± 92.98 323.43 b± 52.99 5.83*
Pro/Arg 1.95 a± 0.98 3.06 b± 0.62 18.22***
isoamylic alcoholc (mg/L) 263.84 a± 44.52 288.17 a± 58.72 ns
glycerold (g/L) 5.51 a± 1.06 5.38 a± 1.53 ns
pH 3.19 a± 0.18 3.17 a± 0.20 ns
total acidity (g/L tartaric acid) 5.33 ± 0.66 6.36 b± 0.88 17.22***
density 0.990 ± 0.01 0.991 a± 0.01 ns
color intensitye 0.19 a± 0.08 0.22 a± 0.06 ns
tonalityf 4.83 a± 0.69 4.50 a± 0.44 ns
total polyphenol index (280 nm) 1.03 a± 0.41 1.20 a± 0.21 ns
TPC (mg/L) 135.61 a± 49.56 172.10 b± 43.66 6.11*
volatile acidity (g/L acetic acid) 0.24 a± 0.07 0.30 a± 0.106 ns
total polysaccharides (mg/L) 378.84 a± 122.68 364.84 a± 127.80 ns
total SO2 (mg/L) 78.00 a± 23.71 77.28 a± 31.43 ns
free SO2 (mg/L) 14.77 a± 10.39 19.44 a± 14.15 ns
glucose (g/L) 0.87 a± 0.60 0.64 a± 0.20 ns
fructose (g/L) 1.28 a± 0.86 1.67 a± 0.88 ns
ethanol (g/L) 96.48 a± 6.93 98.48 a± 4.69 ns

aData in the same row with different letters are significantly different (LSD test at p < 0.05). bns, not significant; *, significant for p < 0.05. **,
significant for p < 0.01; ***, significant for p < 0.001; F, calculated Fisher’s F. cDetermined by NMR. dDetermined by HPLC. e(abs420 + abs520 +
abs620).

f(abs420/abs520).
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organic acid composition (tartaric, malic, and lactic acid) is
dependent on vintage, in this study no organic acids were
affected by vintage.
The three principal organic acids that contribute to total

acidity and come from the grape as photosynthesis metabolites
are citric, malic, and tartaric acids. The citric acid content in
must generally ranges from 150 to 300 mg/L; citrate can be
fermented into lactate by yeast during alcoholic fermentation
and by lactic acid bacteria during malolactic acid fermenta-
tion.21 Therefore, in wine a lower concentration of citric acid
than in must is expected. In all of the studied wines the citric
acid levels (mean content of 636.56 ± 156.62 mg/L in Calabria
and 837.30 ± 256.25 mg/L in Campania wines) (Table 3) were
much higher than the values reported in the literature for other
white wines.34,35 A high citric acid concentration seems to be a
peculiar characteristic of the ‘Greco bianco’ grape variety.
In all of the studied wines the malic acid levels (mean

content of 1.05 g/L in Calabria and 1.87 g/L in Campania
wines) were similar to the values reported in the literature for
some white wines (range of 1.01−2.08 g/L).34 High malate
contents in wines derive from high malate contents in grape
berry, and only a little quantity can be produced during
fermentation by yeasts;28 malate contents in grape berries are
strongly related to the environmental conditions, such as light
exposure.36 In all of the studied white wines the lactic acid
concentration was <1 g/L, suggesting that probably these wines
did not undergo malolactic fermentation. In red wines, lactic
acid generally ranges from 1.3 to 1.4 g/L.17,37

Tartaric acid was present in the studied Calabria and
Campania wines at levels ranging from 1.5 to 1.7 g/L,
respectively, similar to the values reported for other white
wines,38 but much lower than those reported by Lopez-
Tamames et al.34 for Spanish white wines. Generally, tartaric
acid content in grape berry is constant, but its content in wines
can vary, due to potassium bitartrate and calcium tartrate
formation, which tend to precipitate in wines, this phenomenon
depending on winemaking procedures.21 Conversely, Bellomar-
ino et al.39 considered tartaric acid as one of the constituents in
both white and red wines responsible for geographical
discrimination.
Succinic acid is the principal nonvolatile organic acid that

develops during alcoholic fermentation; this compound
generally does not vary during aging and, being the main
byproduct of alcoholic fermentation, its production may be
influenced by alcoholic concentration. High concentrations of
succinate could be related with the higher levels of glycerol in
wine.17 In all of the studied wines the succinic acid levels (mean
contents of 687 mg/L in Calabria and 910 mg/L in Campania
wines) were similar to the values reported in the literature for
the white wines (range of 400−830 mg/L)34 and constituted an
important parameter for differentiating wines by region. Also,
Mazzei et al.37 reported that succinic acid, besides glycerol, was
an important chemical parameter for discriminating wines from
different soils. The succinic acid content in wines generally
ranges from 0.5 to 1.5 g/L, with higher levels in red wines than
in white wines. Succinic acid found in some red Aglianico grape
wines ranged from 2688 to 2638 mg/L,37 whereas in our
previous work concerning the characterization of monovarietal
Aglianico grape red wines from southern Italy the succinic acid
concentration ranged from 976 to 2348 mg/L in wines from
the Basilicata region and from 851 to 1311 mg/L in wines from
Campania.17 Moreover, also in this study, the succinic acid
content was not influenced by vintage.

With regard to TPC, all values found in the studied wines fell
in the range reported for white wines,40 which is equal to 100−
250 mg/L. In particular, wines produced in Campania had a
significantly higher level of total polyphenols (average of 136
mg/L) than found in wines from Calabria (average of 172 mg/
L). Polyphenols are generally considered to be valuable markers
for wine classification, although this chemical parameter is not
considered as index for clustering of wines by some
authors.40,41 The results of this study could confirm a
significant variation of total polyphenols among wines
according to geographical origin, as also reported in the
literature.42

The value of absorbance at 280 nm is a total polyphenol
index and is generally used to evaluate qualitatively the
polyphenolic level in wines. In this study, conversely to TPC,
this parameter did not contribute to differentiate the wines
either by region or by vintage. Also, Bosch-Fuste ́ et al.43

highlighted that no correspondence exists between the
absorbance value at 280 nm and the polyphenolic level in
wines.
As found elsewhere,34,44 glucose was present at lower

concentration than fructose in the sample wines, although
neither of these sugars differentiated the wines by region.
The amount of amino acids present in wine is influenced by

many factors, such as yeast metabolism, enzymatic degradation
of grape proteins, and winemaking conditions. The amino acid
composition can also vary according to grape variety,
geographical origin, or vintage year.17,44 The amino acid
composition can be used to discriminate wines according to
wine variety, geographical origin, and year of production.9,45−48

According to the literature,47 in our study the vintage did not
influence the amino acid concentration in wine; conversely,
Soufleros et al.48 showed that the amino acid composition of
wine is variable according to vintage, especially with regard to
arginine. Moreover, in our study only monovarietal Greco
grape variety has been considered; therefore, if a differentiation
in the amino acid content has been observed among our white
wines, it could be due only to different geographical origin.
Generally, the most abundant amino acid in wine is proline,

which is considered as a genuineness parameter, depending on
exogenous factors, such as fertilization procedures.28 Usually,
proline is not used by yeast as a nitrogen nutrient, whereas
arginine, alanine, and aspartic acid are used during yeast
growth. Proline synthesis in grape increases with increasing
temperature and sun exposure time and decreasing rainfall in
the vineyards.44 In fact, higher proline levels have been found in
sun-exposed grape berries than in shaded berries. In our white
wines, the proline concentration ranged from 581 mg/L for
Calabria samples to 969 mg/L for Campania samples; lower
levels were found in white wines obtained from ‘Aglianico’
grape variety cultivated in southern Italy, with a range of 168−
286 mg/L.44 In any case, a significant difference between wine
samples of two regions was observed (p < 0.001). This fact
confirms the variability of this amino acid according to
geographical origin.17,21

In all of the studied wines the alanine (mean contents of
189.8 mg/L for Calabria and 180.2 mg/L for Campania wines)
and arginine (mean contents of 265.6 mg/L for Calabria and
323.4 mg/L for Campania wines) concentrations were much
higher than those found in white wines obtained from Greek
white grape varieties by Soufleros et al.,48 with mean levels of
91.5 and 32.1 mg/L, respectively. A significant difference
between the tested wines of two regions according to arginine
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and alanine concentrations existed only for arginine (p < 0.05).
The alanine content in wines seems to be characteristic of grape
variety rather than of the geographical origin of wine.36 Also,
the proline/arginine ratio discriminated our white wines on the
basis of provenance; because arginine is an important nitrogen
source for yeasts and proline is not used by yeasts as a nitrogen
nutrient, this ratio could be useful to indicate a different
metabolism of these microorganisms in dependence of soil
cultivation of a certain grape variety.28 The proline/arginine
ratio has been considered as an index to discriminate among
wines.49 Moreover, this ratio is relatively constant according to
vintage in the same grape variety.28

With regard to the main alcohols present in our wines, the
glycerol concentration was not significantly influenced by
geographical origin, besides by vintage, as also reported in the
literature.50 According to Son et al.,44 the different glycerol
contents in wines could be attributed to grape varieties.
Glycerol is not present in must, being a secondary product of
alcoholic fermentation, and is the most abundant byproduct of
yeast fermentation and contributes to the sweetness of wines at
levels ranging from to 1 to 9.0 g/L. Glycerol overproduction is
accompanied by acetic acid accumulation; excessive production
of acetic acid (>1 g/L) is a major side effect, because the
maximum amount desirable in wine is around 0.6 g/L.21 In this
study, the acetic acid content was similar for Calabria and
Campania wines (mean content of 0.323 mg/L). Acetic acid
contributes about 97% to volatile acidity, which is an important
physicochemical parameter in wine; this compound is
principally formed during yeast fermentation by acetaldehyde
oxidation.28 It has been reported that the species involved in
acetic acid formation are favored by higher temperatures of
wine storage and higher wine pH.51 Also, ethanol, present in all
samples at concentrations <99 g/L, did not discriminate our
wines by region, although some authors reported that ethanol
can be described as a parameter related to geographical origin
of wines.50

Isoamyl alcohol is another secondary product of alcoholic
fermentation, formed by isoleucine catabolism; this volatile
compound contributes to improve wine flavor.52 In this study,
isoamyl concentration was higher in Campania wines (288 mg/
L) than in Calabria wines (264 mg/L), even if this difference
was not significant.
Multivariate Data Analysis. PCA was first applied to

study the information hidden in the data. Concerning the year
of production, no separation between samples emerged. The
plot (data not reported) revealed a weak separation between
Calabria samples and Campania samples, but the varimax
rotation was able to separate samples into two groups according
to provenance. In the plot showed in Figure 1a (explained
variance PC1 = 15% and PC2 = 10%, the other PCs did not
add any valuable information concerning the provenance), all of
the Campania samples showed positive rotated PC1 values and
all of the samples from Calabria but Curiale and Val di Neto
samples of both years of production lie in the negative part of
the rotated PC1 axis. These four samples showed chemical
features similar to the samples from Campania, being located in
the upper right quadrant near the Campania samples. In other
words, they seem to belong to the Campania group and not to
the Calabria group of samples. From the plot (Figure 1b) some
interesting information emerges. Wines from Campania
showed higher values of almost all investigated variables. In
particular, the proline and succinic acid contents, together with
the proline/arginine ratio, are mainly responsible for the

separation between the two sample groups showing the highest
loadings values. A PLS-DA model was then built to maximize
the separation between the two classes (Curiale and Val di
Neto samples of both years of production were not considered
in the model for the reason previously explained). A selection
of the most informative variables was carried out to have a
simpler to interpret and model (uninformative variables can
add noise to the model). More in detail, a first model was built
on the whole set of variables and the model coefficients were
calculated. Their uncertainties (expressed as 2 × standard
deviation) were calculated as well by using Marten’s uncertainty
test (implemented in the software The Unscrambler X):
variables with uncertainty limits that do not cross the zero are
significant variables. In the first model the variables with low
coefficient values (absolute value of the weighted coefficient <
0.1) and with the uncertainty limits crossing the zero were
discarded. A new model was built on the subset of selected
variables and the same selection criteria were applied. The
selection stopped when a model with both high coefficient
values (absolute value of the weighted coefficient > 0.1) and
uncertainty limits that do not cross the zero value for all
variables was obtained.
The optimal model (explained Y variance PC1 = 88%, PC2 =

3% as depicted in Figure 2) showed the lower error (RMSECV
= 0.16, R2 = 0.9 for two factors, RMSECV = 0.19, R2 = 0.85
using only the first factor) and allowed correct classification of
all investigated samples in their class (Figure 2c). Total acidity
(indicated in the loadings plot of Figure 2b as “total acid”),
citric, malic, succinic, and lactic acids, proline/arginine ratio,
glucose, and total polyphenol index were thus the more
informative variables.The plot confirms the results obtained by

Figure 1. Scores (a) and loadings (b) plots obtained by the PCA
model after the varimax rotation. In the score plot Calabria samples are
represented by points (•) and Campania samples by stars (∗).
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the rotated PCA: Campania samples showed high values of
almost all variables (they showed negative loading values on 1).
For glucose, it assumed the higher average value in the Calabria
class (it showed a positive 1 loading value). It is worth noting
that wheras in the ANOVA the variables are considered one by
one, in the multivariate approach all of the variables participate
at the same time in the prediction of a certain property (the
contribution of each variable is represented by the regression
coefficient). For this reason the results provided from the two
approaches could not be exactly the same as in this work.
Total acidity is considered one of the variables with

discriminating power among wines belonging to different
soils and climatological conditions.22,50 Also in our study, total
acidity, together with several organic acids, allowed regional
discrimination of wine samples, in accordance with Larrechi et
al.53 From the study conducted by Etievant et al.,54 citric acid
was considered useful to discriminate wines by geographical
origin. Also, Son et al.44 found different concentrations of citric
acid in the same grape varieties but derived from different
regions. Moreover, Son et al.44 highlighted that malate and
citrate are strongly correlated to each other, phosphoenolpyr-

uvate carboxykinase being an enzyme that decarboxylates part
of the oxalacetate formed in the Krebs cycle. This latter
compound can be converted into glucose with elimination of
malate and citrate. Thus, citric acid could be considered a key
metabolite to differentiate wines according to geographical
origin.
In our previous work concerning the characterization of

monovarietal Aglianico grape red wines from southern Italy,
succinic acid and proline, besides the alcohol 2,3-butanediol,
were useful to discriminate wines according to geographical
origin.17 Chemical compounds, such as citrate, succinate, and
lactate, have been considered as markers for geographical wine
characterization by other authors.49 Son et al.21 found that
glucose, proline, succinate, and malate contribute to the
separation of wines by production area. In fact, also proline is
considered among the most common compounds for
distinguishing wines according to their geographical origin.17

On the other hand, Kosir and Kidric10 highlighted the effect of
pedological conditions on the content of glycerol and succinic
acid rather than the wine amino acid composition.
In conclusion, in this study the characterization of wines

produced from ‘Greco bianco’ grape variety in different Italian
areas, such as Calabria and Campania, based on NMR and
conventional physicochemical analyses has been reported. The
data obtained showed that the ‘Greco bianco’ grape variety is
generally rich in organic acids, even if a different composition of
the grape exists depending on geographical origin, albeit
starting from the same vine. In particular, wines from Campania
have more total acidity; citric, malic, succinic, and lactic acids;
total polyphenol index; and proline/arginine ratio, whereas
wines from Calabria have more glucose. These selected
compounds allowed the differentiation of the studied wines
on the basis of geographical origin.
The results of this study could find a more general

application in authenticity studies of wines.
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Tamames, E.; Buxaderas, S. Viability of total phenol index value as

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf204289u | J. Agric.Food Chem. 2012, 60, 7−1514



quality marker of sparkling wines “cavas. Food Chem. 2009, 114, 782−
790.
(44) Son, H. S.; Hwang, G. S.; Kim, K. M.; Park, W. M.; Van den
Berg, F. Metabolomic studies on geographical grapes and their wines
using 1H NMR analysis coupled with multivariate statistics. J. Agric.
Food Chem. 2009, 57, 1481−1490.
(45) Amaral, F. M.; Caro, M. S. B. Investigation of different pre-
concentration methods for NMR analyses of Brazilian white wines.
Food Chem. 2005, 93, 507−510.
(46) Barrado, E.; Rodriguez, J. A.; Castrillejo, Y. Determination of
primary amino acids in wines by high performance liquid magneto-
cromatography. Talanta 2009, 78, 672−675.
(47) Herbert, P.; Cabrita, M. J.; Ratoa, N.; Laureano, O.; Alves, A.
Free amino acids and biogenic amines in wines and musts from the
Alentejo region. Evolution of amines during alcoholic fermentation
and relationship with variety, sub-region and vintage. J. Food Eng.
2005, 66, 315−322.
(48) Soufleros, E. H.; Bouloumpasi, E.; Tsarchopoulos, C.;
Biliarderis, C. G. Primary amino acid profiles of Greek white wines
and their use in classification according to variety, origin and vintage.
Food Chem. 2003, 80, 261−273.
(49) Yuan-Yuan, D.; Guo-Yun, B.; Xu, Z; Mai-Li, L. Classification of
wines based on combination of 1H NMR spectroscopy and principal
component analysis. Chin. J. Chem. 2007, 25, 930−936.
(50) Arozarena, I.; Casp, A.; Marin, R.; Navarro, M. Multivariate
differentiation of Spanish red wines according to region and variety. J.
Sci. Food Agric. 2000, 80, 1909−1917.
(51) Joeux, A.; Lafon-Lafourcade, S.; Ribeŕeau-Gayon, P. Evolution
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